SPREAD SPECTRUM

affiliate_link In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g., an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of reasons, including the establishment of secure communications, increasing resistance to natural interference, noise, and jamming, to prevent detection, and to limit power flux density.

This is a technique in which a telecommunication signal is transmitted on a bandwidth considerably larger than the frequency content of the original information. Frequency hopping is a basic modulation technique used in spread spectrum signal transmission.
Spread-spectrum telecommunications is a signal structuring technique that employs direct sequence, frequency hopping, or a hybrid of these, which can be used for multiple access and/or multiple functions. This technique decreases the potential interference to other receivers while achieving privacy. Spread spectrum generally makes use of a sequential noise-like signal structure to spread the normally narrowband information signal over a relatively wideband (radio) band of frequencies. The receiver correlates the received signals to retrieve the original information signal. Originally there were two motivations: either to resist enemy efforts to jam the communications (anti-jam, or AJ), or to hide the fact that communication was even taking place, sometimes called low probability of intercept (LPI).

affiliate_link Frequency-hopping spread spectrum (FHSS), direct-sequence spread spectrum (DSSS), time-hopping spread spectrum (THSS), chirp spread spectrum (CSS), and combinations of these techniques are forms of spread spectrum. Each of these techniques employs pseudorandom number sequences—created using pseudorandom number generators—to determine and control the spreading pattern of the signal across the allocated bandwidth. Wireless standard IEEE 802.11 uses either FHSS or DSSS in its radio interface.
Techniques are known since the 1940s and used in military communication systems since the 1950s "spread" a radio signal over a wide frequency range several magnitudes higher than the minimum requirement. The core principle of spread spectrum is the use of noise-like carrier waves, and, as the name implies, bandwidths much wider than that required for simple point-to-point communication at the same data rate.
Resistance to jamming (interference). DS (direct sequence) is good at resisting continuous-time narrowband jamming, while FH (frequency hopping) is better at resisting pulse jamming. In DS systems, narrowband jamming affects detection performance about as much as if the amount of jamming power is spread over the whole signal bandwidth when it will often not be much stronger than background noise. By contrast, in narrowband systems where the signal bandwidth is low, the received signal quality will be severely lowered if the jamming power happens to be concentrated on the signal bandwidth.

Resistance to eavesdropping. The spreading code (in DS systems) or the frequency-hopping pattern (in FH systems) is often unknown by anyone for whom the signal is unintended, in which case it obscures the signal and reduces the chance of an adversary's making sense of it. Moreover, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bit rate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower — often significantly lower than the noise PSD — so that the adversary may be unable to determine whether the signal exists at all. However, for mission-critical applications, particularly those employing commercially available radios, spread-spectrum radios do not intrinsically provide adequate security; "...just using spread-spectrum radio itself is not sufficient for communications security".
Resistance to fading. The high bandwidth occupied by spread-spectrum signals offer some frequency diversity, i.e. it is unlikely that the signal will encounter severe multipath fading over its whole bandwidth, and in other cases, the signal can be detected using e.g. a rake receiver.
Multiple access capability, known as code-division multiple accesses (CDMA) or code-division multiplexing (CDM). Multiple users can transmit simultaneously in the same frequency band as long as they use different k codes.

affiliate_link Frequency-hopping may date back to radio pioneer Jonathan Zen neck’s 1908 German book Wireless Telegraphy although he states that Telefunken was using it previously. It saw limited use by the German military in World War I, was put forward by Polish engineer Leonard Danilewicz in 1929, showed up in a patent in the 1930s by Willem Broertjes (U.S. Patent 1,869,659, issued Aug. 2, 1932), and in the top-secret US Army Signal Corps World War II communications system named SIGSALY.
During World War II, Golden Age of Hollywood actress Hedy Lamar and avant-garde composer George Antheil developed an intended jamming-resistant radio guidance system for use in Allied torpedoes, patenting the device under US Patent 2,292,387 "Secret Communications System" on August 11, 1942. Their approach was unique in that frequency coordination was done with paper player piano rolls - a novel approach which was never put into practice.
Related image
Spread-spectrum clock generation (SSCG) is used in some synchronous digital systems, especially those containing microprocessors, to reduce the spectral density of the electromagnetic interference (EMI) that these systems generate. Asynchronous digital system is one that is driven by a clock signal and, because of its periodic nature, has an unavoidably narrow frequency spectrum. In fact, a perfect clock signal would have all its energy concentrated at a single frequency (the desired clock frequency) and its harmonics. Practical synchronous digital systems radiate electromagnetic energy on a number of narrow bands spread on the clock frequency and its harmonics, resulting in a frequency spectrum that, at certain frequencies, can exceed the regulatory limits for electromagnetic interference (e.g. those of the FCC in the United States, JEITA in Japan and the IEC in Europe).
Spread-spectrum clocking avoids this problem by using one of the methods previously described to reduce the peak radiated energy and, therefore, its electromagnetic emissions and so comply with electromagnetic compatibility (EMC) regulations.
affiliate_link It has become a popular technique to gain regulatory approval because it requires only simple equipment modification. It is even more popular in portable electronics devices because of faster clock speeds and the increasing integration of high-resolution LCD displays into ever smaller devices. As these devices are designed to be lightweight and inexpensive, traditional passive, electronic measures to reduce EMI, such as capacitors or metal shielding, are not viable. Active EMI reduction techniques such as spread-spectrum clocking are needed in these cases.
However, spread-spectrum clocking, like other kinds of dynamic frequency change, can also create challenges for designers. Principal among these is clock/data misalignment, or clock skew.

affiliate_link

Comments

Popular posts from this blog

CELL ON WHEELS

NETWORK CONGESTION

CELL SITE